Aluminum Cast Damages – Initial Analysis

Written by admin, 24 March 2021

This is the beginning of our project. The old aluminum cast with multiple damages to mold and faulty steel support structure. JW Portable Welding & Repair. London, Ontario, 2020

The aluminum cast damages as well as its steel support’s damages form the foundation for aluminum cast repair and fabrication of new steel support. First, we must analyze damages in both, aluminum cast and in its steel support structure. Second, we must find correlations and interactions between these damages to develop a constructive solution plan.

Gathering evidence is not as simple as it looks. Many damages hide from the naked eye and only very careful observations and then proper measurements confirm these damages. During the gathering process, I like to work alone without any disturbances, although presence of assistant / helper is necessary.

Aluminum Cast Damages – gathering evidence

Pictures tell the story

I always say that in welding business pictures tell the story.  In gathering evidence for aluminum cast damages, pictures are paramount. Let me share my slightly different technique when taking pictures for aluminum cast damages and for structural damages of aluminum cast’s support. I tend to take pictures of multiple angles from the same point. This technique follows my initial visual inspection when looking on elements. During a visual inspection, I tend to change slightly my visual angle on the element to notice certain details better.

I realize that this method is time consuming, but it simply allows me to see more. More importantly, I very rarely miss details.

Videos describe the details

I like taking videos of process how aluminum cast works in the production process. In case of this aluminum mold, I have taken multiple videos of crew activities during the production process and I have taken them also from different point of views. In this way, I have

  • developed a sequence of tasks how the canoe forms are produced,
  • recognized the list of hand tools used during the process,
  • recognized challenges in the production process.

These videos should show how the things work and engage. They are very important if you plan to improve the production process through making things more ergonomically friendly.

Interviews of technicians working with aluminum cast

In my opinion, developing a good working relationship with technicians directly operating the equipment is extremely important for the project’s success. These technicians know their equipment and they notice its malfunction details. I always tend to ask very specific questions to these technicians to reveal the details.

Top management role in gathering information

Top management involvement and support is extremely necessary for gathering information. Workers have to understand that during the information gathering process, I interrupt their tasks and ask questions. Therefore, the top management must clearly communicate to them that during, my information gathering process their production targets are secondary to my information gathering. Such position is in best interest of top managers from the long-term business perspective.

Aluminum cast damages and their evaluation

After very careful analysis and multiple inspection of this more than 16 foot aluminum cast mold, I have noticed following damages or strange malfunctions.

Damages of aluminum cast lid

Damages of lid’s step – ups

These lid’s step -ups have contained the threaded bores with ½” threaded steel rods. The mold’s lid steel structure supposed to hold the lid by the ½” steel threaded rods. Unfortunately, the ½ inch steel treaded rods were not hold by tread to the mold’s lid but by the pin that was inserted into the holes made in damaged aluminum step – up and the treaded rod. These holes for the pins were severely elongated and pins were bent. I knew that the lid is going to break free from its steel support rather very soon.

The image allows to visualize the risk of aluminum cast disengagement from the steel supporting structure. JW Portable Welding & Repair. London, Ontario, 2020.
Damages of the aluminum cast step – ups and bowing to the flats are marked. JW Portable Welding & Repairs. London, Ontario, 2020.

Extensive damages of threaded bores in the step – ups.

Shallow bores in the step -ups.

From the first look I have noticed that these step – ups are not high enough to provide positive support for ½ inch steel threaded rods. These step – ups were about 1 – ¼” high and considering bore shape and an additional protection of the flat they were engaging actively with a threaded rod for maximum of 5/8”.  These bores were simply too shallow. Even for threaded bores in mild steel I would recommend at least ¾ deep engagement.

Additional horizontal damages to the bores

These bores were much bigger than 9/16”. Clearly, they were damaged by large size helicoil and forces acting in many directions on the steel rod. Definitely, these damages have not indicated a strong vertical pull out.

Bowing of flats

The mold flats were bowing down. Although, I have expected bowing of flats at the middle of this canoe’s mold, but I did not expect bowing of flats at each canoe’s bow. These clamps had caused the bow but there was another factor that have contributed to the damaging factor of clamps’ force. I will mention this factor later on. The structural integrity of flats is very important for sealing effect of the whole mold structure. Additionally, a severe bowing of flats could have put the use of high-power clamps into doubt.

Damages on top surface of the mold’s lid

These damages were located where are the canoe’s bows, but they were on the top surface of mold’s lid. They were very concerning since the mold’s thickness in these places has been reduced from ¾” to ¼” over the distance of 5 inches. Both canoe’s bows had the same severe damages.

Area of damages is marked on the picture to visualize the size and location of damages. JW Portable Welding & Repairs, London, Ontario, 2020
Damages to the aluminum cast lid’s top surface and the poor sealing area between the flats are marked. JW Portable Welding & Repair. London, Ontario, 2020.

I have found that steel blocks used by the canoe’s form maker to provide the support for C clamps were damaging the aluminum cast. The form maker has been using C- clamps to close the lid on top of the bottom mold for years.

Locating pin missing

The locating pin for lid’s alignment to mold’s bottom was missing and the hole was severely damaged. Not only the hole was elongated but also full of product. The product presence in this place indicates usually lack of proper seal.

The mold had to sustain the incline of 25° in the oven and the form maker have suspected that the bottom mold slides down a little during the incline.

Lack of proper sealing effect between flats

The operator has clearly indicated to me that the lid and the bottom does not seal properly at approximately 4.5 feet from the canoe’s each bow. After the initial inspection, I could not believe my findings. The gap between the lid and bottom was about 1 inch at the canoe’s bow without clamps’ engagement. This gap continued through 4.5 feet on the left and right side of the mold and at the distance of about 3 feet was still about ¼ inch. In conclusion, this mold without use of clamps was sealing only through about 7 feet.

I knew that the bottom mold was not deflecting therefore it was clear that the lid was bent up and was causing this gap. The main question is why? I had some suspicious regarding this very important damage.

Damages of lid’s flats from inside in area of canoe’s bows

These damages of the lid were minor and not as severe, but I have noticed change of vertical deflection of lid’s shape at each end of the mold. As I said, both ends of the mold where canoe’s bows are, were bent up more radically than the previously described damage.

The form maker has explained that the lid for a long time has attacked the bottom mold first with the bows and they had to change the tensioning of the threaded rods. But since the gap was about 1 inch between the flats, I have found this theory rather doubtful. I have started to suspect also the fabricator’s failure that is the threaded rods close to the canoe’s bow were too short.

Damages of aluminum cast bottom

I expected some problems with the damages of the mold’s bottom, but I could not confirm any damages. Simply put, the steel structure supporting of the bottom mold was too fragile to turn the bottom upside down and then lift the whole structure by the steel support. The risks of such operation were too great.

Damages of steel support for aluminum cast

The objective of steel support for aluminum cast is to provide solid support and maintain the shape of the aluminum cast during the manufacturing process. If the steel structure does not support the aluminum cast than the manufacturing process damages the aluminum cast. The metal structure does not properly support the aluminum cast or sometimes even damages it due to following reasons:

  1. The structural support has a completely faulty design for the whole aluminum cast, and it does not counteract forces acting on the cast,
  2. The steel support has a partially wrong design and only counteracts forces acting on the cast in some places but in other places it does not provide any support,
  3. Damages to steel support interfere with steel structure properly supporting of the aluminum cast,
  4. Unproper repairs to steel support interfere with the steel structure support of aluminum cast,
  5. The steel support has a damaging effect on aluminum cast since it causes bent and/or stress in the cast.

The structural damages of steel support for the aluminum cast mold were rather severe and all 5 factors mentioned above have contributed to the aluminum cast damages.

Damages of steel support for the aluminum cast lid

Very poor design of lid’s support structure

The top lead support structure had not contained long and uncut elements supporting the whole structure throughout its own length. The welds showed cracks in multiple places and the structural elements showed bowing in unexpected places.

This image illustrates why the top lid have experienced significant deflection when lifted.  JW Portable Welding & Repairs, London, Ontario, 2020
The bowing effect of the steel support structure for the aluminum cast lid is marked. Rigging points (F) marked and main structural joints (A) are visible. The weight of side walls and mounting plates causes bowing of the whole lid’s structure. JW Portable Welding & Repairs, London, Ontario, 2020

Main joints were poorly designed and poorly welded

Elements holding structure mounts were joined to the main structure in extremely poor fashion. These joins were done in low angle with missing bottom welds and missing structural support for the top weld. (A)

The faulty design of structural joints causes additionally contributes to bowing effect. JW Portable Welding & Repairs, London, Ontario, 2020
The mounting plates and side walls are hang on the insufficiently supported joints. JW Portable Welding & Repairs, London, Ontario, 2020

The mounting plates position was an engineering failure

Most disappointing, however was positioning of the very heavy mounting plates (D) attached to the lid’s structure. When we have rigged at points ( F ) and then lifted the lid, these mounting plates contributed significantly to  deflection at both ends. The deflection on both ends was 2 inches and 3.5 inches at the rigging points. The significant deflection caused bending of threaded still rod going parallel to the centerline of the mold (G) .

The weight of all elements marked on the image was causing significant deflection of aluminum cast supporting structure and aluminum lid itself. JW Portable Welding & Repairs. London, Ontario, 2020.
The heavy side walls and balancing weights attached to poorly welded joints. JW Portable Welding & Repair, London, Ontario, 2020.
  1. At that time, I had not realized how bad this situation really was. Later on, I found out that instead the steel supporting the aluminum cast, actually the aluminum cast was supporting the steel. The lid was under severe bending force caused by weights on both ends. That is why when the lead was touching the bottom mold at closing since it was coming at wrong angle causing damages where the canoe’s bows are.

Elements were causing damaging forces in most sensitive points

The elements (B) going from the top structure and containing the ½” rods were not touching the aluminum step-ups of the lid. Only the threaded nut with large washer was designed to provide the positive tensioning into the step up. Consequently, the step – up was under tension in both positions, during the lift and in the oven or cooler. (B)

The image visualizes the damaging force on the aluminum cast in case of improper position of clamps. JW Portable Welding & Repairs. London, Ontario, 2020
Wrong position of clamps caused additional
damage to the bores in aluminum cast
step – ups. JW Portable Welding & Repairs.
London, Ontario, 2020.

This design has also contributed to the 1 inch gap making sealing extremely difficult. The rods in the middle of the lid structure were too long and the rods closer to each end of the lid were slightly too short. This was a typical failure on behalf of the fabricator. As a consequence, the steel support has deflected up the lid while in standing position on the floor.

Clamps wrong position caused twisting of flats and damages to aluminum bores

These ( B) elements had clamps’ latches positioned very high ( C ) and combined with clamps angular position they were causing damages to the aluminum bores. Under the force of clamps, the high leverage force of these elements has caused twist of flats and damages of aluminum bores caused by steel rods. The bending of the steel rod was acting perpendicular to the centerline of the lid.( E)

Missing clamps at each canoe’s bow

The steel support structure was missing 2-3 clamps on left and right side of the mold at each end. I mean, these clamps were either missing, malfunctioned, or broken. Clamps’ latches were bent and did not allow for proper engagement. As I have already mentioned, the form maker was using C- clamps to close the gap.

All remaining clamps were in poor shape

In fact, all remaining clamps were in poor shape. They were uncomfortable to close and their rod’s adjustment was not functioning. All the clamps were wired to prohibit opening during mold’s operation in oven and in cooler.

Product accumulates close to exit of the hoppers

At the initial analysis I just made a not of this issue but in order to develop some inside of this issue I had to remove the hoppers. Therefore, I placed this issue to ”surprise me” category

A disastrous supporting structure for a bottom aluminum cast mold.

I had difficulties to comprehend what kind of objectives were set for the steel support of the bottom aluminum cast except keeping the whole structure in vertical position. The bottom aluminum cast structure flaws were as follows:

  1. Light and thin-walled elements
  2. Extremely poor welding technique
  3. Lack of long and strong elements providing support along the whole bottom support structure,
  4. No support for the bottom mold in the middle
  5. Lack of support for the mold near the canoe’s bows
  6. Unbalanced fabrication therefore clients’ technicians had to weld additional weights.
The areas marked show the extend of faulty design and poor fabrication on steel support for bottom aluminum cast. JW Portable Welding & Repairs. London, Ontario, 2020.
Areas of faulty design in bottom aluminum cast are marked in red. JW Portable Welding & Repair. London, Ontario, 2020

Disengagement and dragging

The joint structure of lid and mold’s bottom have experienced effect of disengagement when the mold was put to cooler and was rotating. Same was happening in the oven. In the mounting position, the bottom mold’s steel support structure was sagging from the lid’s steel structure showing significant gap.

When the old unit was put to cooler the bottom mold’s support structure was disengaging from the top structure with the gap showing at about 1- ¾ inch. Additionally, during rotation at about 10 rpm the bottom mold’s steel support was dragging at the 90° position at about 1”. I had to use the estimate here since the whole unit was rotating pretty fast and I was not able to measure the drag more precisely.

Due to dragging and disengaging effect we have not measured the deflection of the whole unit, that is unit formed by aluminum cast lid and its steel support together with bottom aluminum mold with its steel support.

Additional Functional problems caused by lid’s bowing deflection

Crew had difficulty to close the mold due to the bowing effect of lowered lid and side walls slightly reducing the distance between them. They were using a guide stop to position the side plates in correct distance.

In Summary

In summary, with so many failures, I knew that I had to introduce multiple and well-planned innovations to save this mold. Additionally, I have realized that every innovation should take aim at multiple failures.

Leave a Reply

Your email address will not be published. Required fields are marked *